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COMPAGNIE GÉNÉRALE DE L’INDUSTRIE (CGI)

• Fondée en 2013 par Sébastien Besse

• Bureau de calculs mécaniques industriels : nos spécialités 

mais pas que, sont la charpente acier, la tuyauterie 

industrielle, les appareils à pression
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Exemples de grandes structures à travers l’histoire
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Exemples de projets de tours de très grandes hauteurs

Tour Djeddah 1007 m

(Arabie Saoudite)

Sky Mile Tower 1700 m

Tokyo (Japan)

Oblisco Capitale 1000 m

(Egypte)



X-Seed 4000  (Tokyo, 1995)



Le « prototype » de la Tour Eiffel

▶ Construite en 1889 avec de la cornière, des plates et des rivets

▶ Conçue sans électricité ni les ordinateurs ni la méthode des éléments finis

▶ Eurocodes : vent zone 2,   sismicité zone 1,    neige zone A1



Pourquoi une tour de 3000 mètres n’est pas construite en 2025 ?

▶ Construire une tour de 3000 mètres de hauteur pose de nombreux défis 
techniques, économiques, environnementaux et logistiques. Voici quelques-
unes des principales raisons pour lesquelles une telle structure n'a jamais été 
construite.

▶ Problèmes techniques et ingénierie
▶ Stabilité structurelle : résistance au vent et aux séismes

▶ Charges de compression sur les poteaux du rez-de-chaussée et risque de 
flambement

▶ Matériaux

▶ Ascenseurs

▶ Coût

▶ Problèmes environnementaux

▶ Logistique et accessibilité

▶ Limites humaines et confort



La tour de 3000 mètres

▶ Hauteur : 3000 mètres

▶ Fonction : centre commercial (70%) + tourisme (30%)

▶ Planchers : 4  (RDC, 1000, 2000, 3000 mètres)

▶ Structure en dentelle pour réduire les charges de vent

▶ Poids : ~ 750 000 tons (hors fondations)

▶ Matériau : acier au carbone S460

▶ Utilité sociale : 
▶ Centre d’observation des incendies

▶ Observatoire astronomique à 3000 mètres

▶ Zone de rassemblement de la population en cas d’inondation

▶ Fermes agricoles

▶ Zone de base jump

▶ Plancher en verre



Géométrie





Vues 3D (0°, de z = 0 à 3000 m)
75 niveaux de 40 mètres

115 000 éléments poutres / 34 000 noeuds



Vue 3D (de 0 à 18°, de z = 0 à 120 m)

26 000 éléments poutres / 12 000 noeuds



Logiciels et ressources informatiques

▶ Plus de 30 millions de poutres

▶ Impossibilité de faire un modèle 3D réaliste sur un ordinateur en 2025 même en éléments poutres 

▶ Calculs réalisés avec Robot Structural Analysis et ANSYS Mechanical (4CAD)

▶ Modélisation du premier tronçon de 40 mètres

▶ Code de calculs : Eurocodes 0, 1, 3, 8

▶ Méthode des éléments finis avec ANSYS Mechanical

▶ Résolution de millions of degrés of liberté en secondes

▶ Devrait être avec la théorie élastique linéaire

et un matériau linéaire

▶ Symétrie cylindrique

▶ Longueur de flambement : 1 mètre

3000 poutres / 1000 noeuds



Méthode de calcul global

▶ Poids total
𝑃𝑡𝑜𝑡 = 𝛼𝑃1 = 𝑃1෍
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𝑁 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑛𝑖𝑣𝑒𝑎𝑢 𝑑𝑒 40 𝑚è𝑡𝑟𝑒𝑠 (𝑁 = 75)
𝑃1 𝑝𝑜𝑖𝑑𝑠 𝑑𝑢 𝑝𝑟𝑒𝑚𝑖𝑒𝑟 𝑛𝑖𝑣𝑒𝑎𝑢 𝑧 = 0 à 40 𝑚è𝑡𝑟𝑒𝑠
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▶ Surface de poids total

Poids du premier niveau P1
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𝑃𝑡𝑜𝑡 < 𝑃1 + 60 × 4 × 3000 𝑡𝑜𝑛𝑛𝑒𝑠

𝑃𝑡𝑜𝑡 < 39 612 𝑡𝑜𝑛𝑛𝑒𝑠 + 60 × 4 × 3000 𝑡𝑜𝑛𝑛𝑒𝑠 = 759 612 𝑡𝑜𝑛𝑛𝑒𝑠

(P1, α, Ptot) = 

(39 612 tonnes, 18.866, 747 320 tonnes)

𝑃𝑡𝑜𝑡 = 𝛼𝑃1



Etat Limite Ultime (ELU)

Acier S460

Taux de travail maximal : 99 %

Contrainte maximale : 454 MPa 

(< 460 MPa) 



Etat Limite de Service (ELS)



Etat Limite de Service (ELS) 130 mm



Déflexion horizontale due au vent à z = 3000 m

Déflexion due au vent, basé sur 300 daN/m²

Pour la Tour Eiffel, Eurocode : H / 150
H / 150 = 300 000 mm / 150 = 2 mètres

Experimental : max 130 mm (tempête, 1999)

La tour Eiffel respecte un critère H / 2300

La Tour de 3000 m respecte un critère H / 54 000



Supports articulés en pieds de poteaux 
(160 tonnes x 240 supports)

IPE 600

HEM 1000

HEM 500

CAE 100x10

BAR 1500

DN1000

acier S460

(tonnage de tous les supports 

≈ 6500 éléphants)



Calculs mécaniques des articulations

Déplacement

Contrainte
Maillage SHELL181

Géométrie



Croix de stabilité dans le macro-poteau 



Détails des assemblages des 9 poteaux IPE600



Analyse modale et méthode du spectre de réponse (RSM)

Méthode du mode de superposition 

15 modes

Combinaison de la réponse modale avec la méthode Complete Quadratic Combination (CQC)

Correction de la masse manquante : force due à la masse manquante

Combinaison spatiale (réponse dynamique triaxiale) 
La réponse maximale due au séisme sera la plus grande parmi les trois suivants :  
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𝑀𝑚𝑎𝑠𝑠𝑒 𝑡𝑜𝑡𝑎𝑙𝑒

𝑆𝐴𝑚𝑎𝑥 𝑎𝑐𝑐é𝑙é𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝑒 𝑚𝑎𝑥𝑖𝑚𝑎𝑙𝑒
à 𝑙𝑎 𝑓𝑟é𝑞𝑢𝑒𝑛𝑐𝑒 𝑑𝑒 𝑐𝑜𝑢𝑝𝑢𝑟𝑒

𝑅 = ±𝑅𝑥 ± 0.4𝑅𝑦 ± 0.4𝑅𝑧

𝑅 = ±𝑅𝑦 ± 0.4𝑅𝑧 ± 0.4𝑅𝑥

𝑅 = ±𝑅𝑧 ± 0.4𝑅𝑥 ± 0.4𝑅𝑦



Analyse modale : résultats préliminaires

N°1 : 0.05 Hz N°2 : 0.05 Hz N°3 : 0.11 Hz N°4 : 0.11 Hz N°5 : 0.11 Hz

N°6 : 0.17 Hz N°7 : 0.18 Hz N°8 : 0.18 Hz N°9 : 0.24 Hz N°10 : 0.28 Hz



Réservoirs, tuyauteries sous pression et pompes

1 bar tous les 10 mètres d’altitude 
(eau) (hors pertes de charge)

Pompes de relevage tous les 40 mètres

Supports sur les traverses tous les 4 m

Réservoirs suivant CODRES Div.1 2023

Tuyauteries suivant CODETI Div.1 2023

Supports



Vue de côté Vue en perspective

Escaliers et passerelles d’accès



Plancher z = +3000 m
(10 300 tonnes)

Vue aérienne

Vue en perspective (23 000 éléments poutres, 8 000 noeuds)



Gradient thermique causé par le soleil, négligeable

L’ombrage par les poutres limite significativement le 
gradient thermique causé par le soleil

25°C/60°C gradient thermique  

(ne se produit jamais)



Je vous laisserai avec cette question

Comment cette structure peut-elle être intégrée 
aux besoins socio-écologiques et à la durabilité 
du futur ?
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